
Recommender System
Asmae Tounsi, Lukas Moser, Deepak Karkala Kaggle Team Name: ALD

Ecole Polytechnique Federale de Lausanne, Switzerland

Abstract—This project aims at building a recommender sys-
tem. Given a data matrix, the objective is to predict the missing
entries in the matrix. We begin with few baseline methods. We
then build the Matrix factorization method using several methods
such as Stochastic Gradient Descent, Alternating Least Squares
and Coordinate Descent. We take into account the user and
item biases while predicting the ratings. Further, we also explore
the nearest neighbor model such as user collaborative filtering.
We aim to build an ensemble model by combining latent factor
models with the nearest neighbor model in order to build a better
recommender system. Cross validation is used to determine the
optimal parameters for each of the models. We compare the
RMSE for predictions obtained with each of the models and
present the results.

I. INTRODUCTION

This work aims at building a recommender system. We
are given a matrix with D = 10000 rows and N = 1000
columns, where each row and column represents an item and
a user respectively. The total number of observed ratings is
1176952. Thus the given data matrix is very sparse and the
objective of the project is to predict the missing entries in the
matrix. The Root Mean Square Error (RMSE) is used as a
metric to evaluate the prediction capability of a model.

II. METHODOLOGY

In this section, we start with some baseline methods and
then proceed to explain the Matrix factorization and the
Nearest Neighbor models.

A. Baseline methods

We begin by using several simple methods to predict the
ratings. These will serve as a baseline to compare the other
methods developed in the later sections.

1) Global Mean: A naive method of predict the rating is
to use the mean of all observed entries in the given matrix as
an estimate for all the missing entries. The global mean can
be computed as

x̂ =
1

|Ω|
∑

(d,n)∈Ω

xdn (1)

where Ω is the set of all observed training indices and (d,n)
is the training data matrix.

2) User Mean: A better method of predicting is to compute
the mean of all the ratings for a given user and then use this
mean as a prediction for all the missing entries for that user.
The user mean can be computed as

x̂n =
1

|Ωn|
∑

(d)∈Ωn

xdn (2)

where Ωn is the set of items rated by n-th user.
3) Item Mean: Similar to user specific mean, we can also

use item specific mean to predict the missing ratings. In this
case, we compute the mean of all the ratings for a given item
and then use this mean as an estimate for all the missing entries
for that item. The item mean can be computed as

x̂d =
1

|Ωd|
∑

(n)∈Ωd

xdn (3)

where Ωd is the set of users who have rated by d-th item.

B. Models and Methods

1) Matrix factorisation: Given the items d = 1,2...D and
the users n = 1,2...N, let X be the DxN data matrix
containing all the rating entries.

Matrix factorization models map both users and items to a
joint latent factor space of dimensionality K, such that user-
item interactions are modeled as inner products in that space.
The aim is to determine the two matrices W, Z such that the
data matrix X is approximated by

X ≈WZT (4)

where W and Z are matrices of dimensions DxK and
NxK respectively and K << D,N. Each row of W and Z is
the feature representation of a movie and a user respectively.

In general, the matrix X is very sparse. Let Ω be the indices
of the observed ratings of the input matrix X. The objective
is to determine the matrices W and Z such that the following
cost function is minimised.

minW,ZL(W,Z) =
1

2

∑
(d,n∈Ω)

[xdn − (WZT
dn)]2 (5)

Further in order to avoid over-fitting, we can use regular-
isation and penalise arbitrarily large entries in W and Z. In
this case, we will minimise the following cost function,

1

2

∑
(d,n∈Ω)

[xdn − (WZT
dn)]2 +

λw
2
‖W ‖2Frob +

λz
2
‖ Z ‖2Frob

(6)
where λw, λz > 0 are scalars. The parameters K, λw, λz are
determined using cross validation.

The above minimisation can be done using multiple
methods. In this work, we use Stochastic Gradient Descent,
Alternating least squares and the Coordinate descent methods
to determine the matrices W and Z.

• Stochastic Gradient Descent
In this method, for each rating in training set, we predict
xd,n and compute the gradients as

∇wd = −(xdn − (WZT)dn)xn + λitemwd (7)

∇zn = −(xdn − (WZT)dn)wd + λuserzn (8)

The updates for gradient descent can then be computed
as

wd ← wd − γ∇wd (9)

zn ← zn − γ∇zn (10)

where γ is the learning rate. The predictions are then
computed as WZT

Since the ratings are between 1 and 5, we initialized the
matrices W and Z with random integers between 1 and 5.

• Alternating Least Squares
The problem in Equation-6 is intrinsically a non-convex
problem; however, when we fix either Z or W , Equation-
6 becomes a quadratic problem with a globally optimal
solution. Based on this idea, ALS alternatively switch
between updating W while keeping Z fixed, and updating
Z while keeping W fixed. Thus, ALS decreases the
value of cost function until convergence. Under this opti-
mization scheme, Equation-6 can be separated into many
independent least squares subproblems. Specifically, if we
fix Z to minimize over W , the optimal w∗d is obtained
independently of other rows of W by solving the least
squares subproblem :

minwd

∑
(n∈Ωd)

(xdn − (wT
d zn))2 + λitem ‖ wd ‖2 (11)

which leads to the closed form solution :

w∗d = (ZT
Ωd
ZΩd

+ λitemI)−1ZT
Ωd
xd,Ωd

(12)

where ZΩd
is the sub-matrix formed by zn : n ∈ Ωd

and xd,Ωd
is the dth row of X where only the values

xdn : n ∈ Ωd are selected. Updating wn is done
symmetrically.

• Bias The rating of a movie doesn’t reflect perfectly how
a lambda user like it, that’s why the fact that there are
users that always rate movies ”too” low or ”too” high
should be taking in account. And also there is movie that
are under or over ratted due to the actors in it, or due to
the director.
So a bias is added for each user, and one for each
movie. The biases isn’t fixed and change over time. An
implementation of it in ALS method gave good result.
The fact that taking biases into account improves the
result has been discussed in [1], [2] and [3].

• Linear corrector Generally in machine learning project
you want to get all possible information, and then select
the useful ones. Some others information like timings
could be helpful, the popularity of a movie can change
in time, it also depends on the budget put in ads. The
appreciation of a movie by an user also can vary in time.
But in this project the only data given is the different
ratings for each users and each movies, however from
this data, information such as mean per movie or per
user or even the count of ratings can be extracted.
So once you get a good prediction using other method
(such as matrix factorization), a simple algorithm based
on ridge regression with these new features: ratings mean,
standard deviation on ratings, ratings count for each user
and for each movie, slightly improve the prediction.
After several run it has been shown that this methods
doesn’t improve significantly the prediction, so if it’s not
for a competition, it does not bring much.

• Coordinate Descent approaches
The basic idea of coordinate descent is to update a sin-
gle variable at a time while keeping others fixed. There
are two key components in coordinate descent methods:
one is the update rule used to solve each one-variable
subproblem, and the other is the update sequence of
variables. The coordinate descent approach is explained
in [4]
If only one variable wdt is allowed to change to y while
fixing all other variables, we are able to formulate the
following one-variable subproblem as

miny
∑

(n∈Ωd)

(xdn−(wT
d zn−wdthnt)−yhnt)2 +λitemy

2

(13)
, This function is a univariate quadratic function. The
unique solution y∗ can be easily found :

y∗ =

∑
(n∈Ωd)(xdn − wT

d zn + wdtznt)znt

λitem +
∑

(n∈Ωd) z
2
nt

(14)

, The update rules of each variable in Z can be derived
in a similar way.
a) Item/User wise update (CCD Cyclic coordinate de-
scent): First, we consider the item/user-wise update
sequence, which updates the variables corresponding to
either an item or a user at the same time. The entire
update of one iteration in CCD is

W︷ ︸︸ ︷
w11, . . . , w1k︸ ︷︷ ︸

w1

, . . . , wd1, . . . , wdk︸ ︷︷ ︸
wd

,

Z︷ ︸︸ ︷
z11, . . . , w1k︸ ︷︷ ︸

z1

, . . . , zn1, . . . , znk︸ ︷︷ ︸
zn

(15)
b) Feature wise update (CCD++): The factorization can
be represanted as a summation of K outer products:

X ≈WZT =

K∑
t=1

wtz
T
t , (16)

where (wt, zt) are the tth columns of W and Z. In
each iteration of CCD++, we select a specific feature t
and conduct the update by solving the rank-one matrix
factorization wtz

T
t using CCD.

2) User collaborative filtering: Matrix factorization models
map both users and items to a joint latent factor space of lower
dimensionality. While this works well in practice, it was shown
in [5] that using a variety of models that complement the
shortcomings of each other tend to perform better. Based on
this, we decided to explore user based collaborative filtering,
which was the preferred method for building recommender
models before the advent of matrix factorization. In collabo-
rative filtering, given a user and an item not yet rated by the
user, the goal is to estimate the user rating for this item by
looking at the ratings for the same item that were given in the
past by similar users.

User collaborative filtering requires the following:
User similarity metric

We used Pearson correlation coefficient as a metric
to measure similarity between users.

User neighborhood size
The number of users to compute the aggregated
ratings. The optimal number was determined through
cross validation.

Aggregation function
The missing ratings are predicted using the weighted
ratings of the users in the neighborhood with the
user similarity acting as weights.

3) Ensemble Model (ALS and User collaborative filter-
ing): Finally we create an ensemble method consisting of
predictions from ALS and User collaborative filtering. The
predictions for the ensemble model were computed as the
weighted average of the predictions from the two models.

x̂dn ensemble = wals ∗ x̂dn als + (1−wals) ∗ x̂dn user filter

(17)
where wals is the weight for predictions from ALS in ensemble
model and is determined through cross validation. Also since
we know that ratings lie between 1 and 5, predictions above
5 and less than 1 were set to 5 and 1 respectively.

III. RESULTS

In this section, we present the results for each of the
methods described in the previous section. We use 10 fold
cross-validation to find the optimal parameters for all the
methods.

A. Matrix factorisation with SGD
1) Number of features K:: The RMSE with different

number of latent features is shown in Figure-1. The other
parameters were set as follows: λuser = 0.1, λitem = 0.1
and learning rate γ = 0.01.

It can be observed that the RMSE increased with increase
in the number of features. This result was unexpected and
surprising since in various literature, values of 10 to 60 were
reported as optimal.

Fig. 1. Cross validation: Number of features in Matrix factorization with
SGD.

2) Regularisation parameters: λuser and λitem: The
RMSE with different values for λuser and λitem is shown in
Figure-2. The other parameters were set as follows: K = 1,
and learning rate γ = 0.01.

Fig. 2. Matrix factorization using SGD: On the left is the cross validation
plot for λuser and on the right is that for λitem

B. Matrix factorisation with ALS

1) Number of features K:: The RMSE with different num-
ber of latent features is shown in the left plot of Figure-3.

Fig. 3. Matrix factorization: On the left is the cross validation plot for number
of latent features with ALS and on the right is that for CCD++.

2) Regularisation parameters: λuser and λitem: The
RMSE with different values for λuser and λitem is shown in
Figure-4. The other parameters were set as follows: K = 2.

Fig. 4. Matrix factorization using ALS: On the left is the cross validation
plot for λuser and on the right is that for λitem

C. Matrix factorisation with CCD++

1) Number of features K:: The RMSE with different num-
ber of latent features is shown in the right plot of Figure-3

2) Regularisation parameters: λuser and λitem: The
RMSE with different values for λuser and λitem is shown in
Figure-5. The other parameters were set as follows: K = 2.

Fig. 5. Matrix factorization with CCD++: On the left is the cross validation
plot for λuser and on the right is that for λitem

D. User collaborative filtering

The cross validation plot for the neighborhood size in user
collaborative filtering is shown in the left plot of Figure-6.

Fig. 6. On the left is the cross validation plot for neighbourhood size in user
collaborative filtering and on the right is the cross validation plot for the ALS
prediction weights in ensemble method.

E. Ensemble (ALS and User collaborative filtering

The cross validation plot for the ALS prediction weights
in ensemble method is shown in the right plot in Figure-6.
The final set of optimal parameters used in our model is as

follows: Number of features K=2, λuser=0.01, λitem=0.01,
user neighborhood size Nu=50, weight for ALS predictions
in ensemble method wals=0.75.

IV. DISCUSSION

Based on the cross validation results in the previous section,
it was surprising to see that optimal number of latent features
in the matrix factorization model is as low as 1 or 2. This
was contradictory to the results in the literature where optimal
values were much higher. We also observed that coordinate
descent methods (CCD, CCD++) converged a lot faster than
ALS, SGD and was therefore faster to train.

With the optimal parameters determined for all the models,
we then compared the prediction capabilities (RMSE) of each
of the model in order to determine the best model. We used
10 fold cross validation and the resulting mean RMSE is as
shown in Figure 7. The plot also shows the standard deviation
for each of the models. It can be seen from the figure that

Fig. 7. Cross validation: Evaluation of methods for Recommender System.

Matrix factorization models using SGD, CCD have similar
RMSE. We also observed that taking user and item biases
into account improves the recommender model as evident
with the lower RMSE in the ALS with bias method. Further
the ensemble model consisting of ALS and user collaborative
filtering performed much better. Thus it can be concluded that
better recommender systems can be built by combining the
nearest neighbor models with the latent factor models.

V. SUMMARY

In this project, we set out to build a recommender model.
We started with simple models such as global, user and item
means which served as baseline methods. We then built the
Matrix factorization models using SGD, ALS, CCD, CDD++.
We observed that by accounting for user and item biases, there
was an improvement in predicted ratings. We also built a near-
est neighbor model based on user collaborative filtering. The
final predictions for ratings were generated by an ensemble
model consisting of ALS and user collaborative filtering. Cross
validation was used to determine the optimal parameters for
each of the models and also to compare different models.
Results showed that the best recommender models can be
obtained by combining nearest neighbor models with the latent
factor models.

REFERENCES

[1] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization
techniques for recommender systems,” Computer, vol. 42,
no. 8, pp. 30–37, Aug. 2009. [Online]. Available:
http://dx.doi.org/10.1109/MC.2009.263

[2] Y. Koren, “1 the bellkor solution to the netflix grand prize,”
2009.

[3] W. Kirwin, “Implicit recommender systems:
Biased matrix factorization.” [Online]. Available:
http://activisiongamescience.github.io/2016/01/11/
Implicit-Recommender-Systems-Biased-Matrix-Factorization/

[4] S. S. Hsiang-Fu Yu, Cho-Jui Hsieh and I. Dhillon,
“Scalable coordinate descent approaches to parallel
matrix factorization for recommender systems,” IEEE
International Conference on Data Mining(ICDM), no. 2,
pp. 765–774, Dec. 2012. [Online]. Available: http:
//www.cs.utexas.edu/∼cjhsieh/icdm-pmf.pdf

[5] R. M. Bell and Y. Koren, “Lessons from the netflix
prize challenge,” SIGKDD Explor. Newsl., vol. 9,
no. 2, pp. 75–79, Dec. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1345448.1345465

http://dx.doi.org/10.1109/MC.2009.263
http://activisiongamescience.github.io/2016/01/11/Implicit-Recommender-Systems-Biased-Matrix-Factorization/
http://activisiongamescience.github.io/2016/01/11/Implicit-Recommender-Systems-Biased-Matrix-Factorization/
http://www.cs.utexas.edu/~cjhsieh/icdm-pmf.pdf
http://www.cs.utexas.edu/~cjhsieh/icdm-pmf.pdf
http://doi.acm.org/10.1145/1345448.1345465

	Introduction
	Methodology
	Baseline methods
	Global Mean
	User Mean
	Item Mean

	Models and Methods
	Matrix factorisation
	User collaborative filtering
	Ensemble Model (ALS and User collaborative filtering)

	Results
	Matrix factorisation with SGD
	Number of features K:
	Regularisation parameters: user and item

	Matrix factorisation with ALS
	Number of features K:
	Regularisation parameters: user and item

	Matrix factorisation with CCD++
	Number of features K:
	Regularisation parameters: user and item

	User collaborative filtering
	Ensemble (ALS and User collaborative filtering

	Discussion
	Summary

